Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
ACS Sens ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549498

RESUMO

Photonic technologies promise to deliver quantitative, multiplex, and inexpensive medical diagnostic platforms by leveraging the highly scalable processes developed for the fabrication of semiconductor microchips. However, in practice, the affordability of these platforms is limited by complex and expensive sample handling and optical alignment. We previously reported the development of a disposable photonic assay that incorporates inexpensive plastic micropillar microfluidic cards for sample delivery. That system as developed was limited to singleplex assays due to its optical configuration. To enable multiplexing, we report a new approach addressing multiplex light I/O, in which the outputs of individual grating couplers on a photonic chip are mapped to fibers in a fiber bundle. As demonstrated in the context of detecting antibody responses to influenza and SARS-CoV-2 antigens in human serum and saliva, this enables multiplexing in an inexpensive, disposable, and compact format.

2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464301

RESUMO

Point of care (PoC) nucleic acid amplification tests (NAATs) are a cornerstone of public health, providing the earliest and most accurate diagnostic method for many communicable diseases, such as HIV, in the same location the patient receives treatment. Communicable diseases disproportionately impact low-resource communities where NAATs are often unobtainable due to the resource intensive enzymes that drive the tests. Enzyme-free nucleic acid detection methods, such as hybridization chain reaction (HCR), use DNA secondary structures for self-driven amplification schemes producing large DNA nanostructures and capable of single molecule detection in cellulo. These thermodynamically driven DNA-based tests have struggled to penetrate the PoC diagnostic field due to their inadequate limits of detection or complex workflows. Here we present a proof-of-concept NAAT that combines HCR-based amplification of a target nucleic acid sequence with paper-based nucleic acid filtration and enrichment capable of detecting sub pM levels of synthetic DNA. We reconstruct the favorable hybridization conditions of an in cellulo reaction in vitro by incubating HCR in an evaporating, microvolume environment containing poly(ethylene glycol) as a crowding agent. We demonstrate that the kinetics and thermodynamics of DNA-DNA and DNA-RNA hybridization is enhanced by the dynamic evaporating environment and inclusion of crowding agents, bringing HCR closer to meeting PoC NAAT needs.

3.
Biosensors (Basel) ; 13(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37754104

RESUMO

Arrayed imaging reflectometry (AIR), first introduced in 2004, is a thin-film interference sensor technique that optimizes optical properties (angle of incidence, polarization, substrate refractive index, and thickness) to create a condition of total destructive interference at the surface of a silicon substrate. The advantages of AIR are its sensitivity, dynamic range, multiplex capability, and high-throughput compatibility. AIR has been used for the detection of antibodies against coronaviruses, influenza viruses, Staphylococcus aureus, and human autoantigens. It has also shown utility in detection of cytokines, with sensitivity comparable to bead-based and ELISA assays. Not limited to antibodies or antigens, mixed aptamer and protein arrays as well as glycan arrays have been employed in AIR for differentiating influenza strains. Mixed arrays using direct and competitive inhibition assays have enabled simultaneous measurement of cytokines and small molecules. Finally, AIR has also been used to measure affinity constants, kinetic and at equilibrium. In this review, we give an overview of AIR biosensing technologies and present the latest AIR advances.


Assuntos
Técnicas Biossensoriais , Influenza Humana , Humanos , Técnicas Biossensoriais/métodos , Anticorpos , Análise Serial de Proteínas , Citocinas
4.
Dermatol Ther (Heidelb) ; 13(10): 2417-2429, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615834

RESUMO

INTRODUCTION: Patients with atopic dermatitis (AD) are uniquely susceptible to a number of serious viral skin complications, including eczema herpeticum (EH), caused by herpes simplex virus. This study explored the associations between biomarkers of epithelial barrier dysfunction, type 2 immunity, Staphylococcus aureus infection, and S. aureus-specific immunoglobulin responses in a cohort of AD subjects with and without a history of EH (EH+ and EH-, respectively). METHODS: A total of 112 subjects with AD (56 EH+, 56 EH-), matched by age and AD severity, were selected from a registry of over 3000 AD subjects. Logistic regression was used to test the association between history of S. aureus skin infection and history of EH, while controlling for a number of confounders. RESULTS: Compared to those without a history of S. aureus skin infection, subjects with a history of S. aureus skin infection were found to have more than sixfold increased odds of having a history of EH (6.60, 95% confidence interval [CI]: 2.00-21.83), after adjusting for history of other viral skin infections (molluscum contagiosum virus, human papillomavirus), serum total IgE, and IgG against the S. aureus virulence factor SElX. CONCLUSIONS: These findings indicate an important relationship between S. aureus skin infections and EH.

5.
Sensors (Basel) ; 23(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050756

RESUMO

Today, optical sensors are the subject of a very significant number of studies and applications [...].

6.
PLoS One ; 18(2): e0277846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36749755

RESUMO

Immune responses to COVID-19 infection and vaccination are individual and varied. There is a need to understand the timeline of vaccination efficacy against current and yet to be discovered viral mutations. Assessing immunity to SARS-CoV-2 in the context of immunity to other respiratory viruses is also valuable. Here we demonstrate the capability of a fully automated prototype Arrayed Imaging Reflectometry system to perform reliable longitudinal serology against a 34-plex respiratory array. The array contains antigens for respiratory syncytial virus, seasonal influenza, common human coronaviruses, MERS, SARS-CoV-1, and SARS-CoV-2. AIR measures a change in reflectivity due to the binding of serum antibodies to the antigens on the array. Samples were collected from convalescent COVID-19 donors and individuals vaccinated with a two-dose mRNA vaccine regimen. Vaccinated samples were collected prior to the first dose, one week after the first dose, one week after the second dose, and monthly thereafter. Information following booster dose and/or breakthrough infection is included for a subset of subjects. Longitudinal samples of vaccinated individuals demonstrate a rise and fall of SARS-CoV-2 spike antibodies in agreement with general knowledge of the adaptive immune response and other studies. Linear Regression analysis was performed to understand the relationship between antibodies binding to different antigens on the array. Our analysis identified strong correlations between closely related influenza virus strains as well as correlations between SARS-CoV-2, SARS-CoV-1, and human coronavirus 229E. A small test of using diluted whole blood from a fingerstick provided clean arrays with antibody binding comparable to serum. Potential applications include assessing immunity in the context of exposure to multiple respiratory viruses, clinical serology, population monitoring to facilitate public health recommendations, and vaccine development against new viruses and virus mutations.


Assuntos
COVID-19 , Humanos , Antivirais , SARS-CoV-2 , Formação de Anticorpos , Anticorpos Antivirais , Vacinação
7.
ACS Sens ; 8(2): 739-747, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36787432

RESUMO

Wearable, mobile, and point-of-care (POC) sensors comprise a rapidly expanding field of devices aimed at improving human health by relaying real-time biometric data such as heart rate and glucose levels. The current scope of what these devices can offer healthcare is limited by their inability to measure biomarkers associated with inflammation, well-being, and disease. Photonic biosensors that integrate sensing elements directly with spectrometers, lasers, and detectors are an attractive approach to enabling POC sensors, with distinct advantages in terms of size, weight, power consumption, and cost. Here, we have demonstrated for the first time the integration of photonic microring resonator biosensors with an on-chip microring filter bank spectrometer for the controlled detection of inflammatory biomarker C-reactive protein (CRP) in serum. We demonstrate that sensor and spectrometer performance is tolerant of temperature variation, as temperature dependence moves in parallel. Finally, we assess the impact of manufacturing variability on the 300 mm wafer scale on the performance of the spectrometer. Taken together, these results suggest that integration of on-chip ring filter bank spectrometers with ring resonator-based biosensors constitutes an attractive approach toward cost-effective integrated sensor development.


Assuntos
Óptica e Fotônica , Refratometria , Humanos , Compostos de Silício , Fótons , Biomarcadores
8.
Lab Chip ; 23(2): 239-250, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594179

RESUMO

Tissue chip (TC) devices, also known as microphysiological systems (MPS) or organ chips (OCs or OoCs), seek to mimic human physiology on a small scale. They are intended to improve upon animal models in terms of reproducibility and human relevance, at a lower monetary and ethical cost. Virtually all TC systems are analyzed at an endpoint, leading to widespread recognition that new methods are needed to enable sensing of specific biomolecules in real time, as they are being produced by the cells. To address this need, we incorporated photonic biosensors for inflammatory cytokines into a model TC. Human bronchial epithelial cells seeded in a microfluidic device were stimulated with lipopolysaccharide, and the cytokines secreted in response sensed in real time. Sensing analyte transport through the TC in response to disruption of tissue barrier was also demonstrated. This work demonstrates the first application of photonic sensors to a human TC device, and will enable new applications in drug development and disease modeling.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Humanos , Reprodutibilidade dos Testes , Células Epiteliais , Pulmão
9.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501760

RESUMO

Photonic chip-based methods for spectroscopy are of considerable interest due to their applicability to compact, low-power devices for the detection of small molecules. Waveguide-enhanced Raman spectroscopy (WERS) has emerged over the past decade as a particularly interesting approach. WERS utilizes the evanescent field of a waveguide to generate Raman scattering from nearby analyte molecules, and then collects the scattered photons back into the waveguide. The large interacting area and strong electromagnetic field provided by the waveguide allow for significant enhancements in Raman signal over conventional approaches. The waveguide can also be coated with a molecular class-selective sorbent material to concentrate the analyte, thus further increasing the Raman signal. This review provides an overview of the historical development of WERS and highlights recent theoretical and experimental achievements with the technique.


Assuntos
Óptica e Fotônica , Análise Espectral Raman , Análise Espectral Raman/métodos , Fótons
10.
Adv Mater Technol ; 7(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35935145

RESUMO

Paper-based analytical devices, or µPADs, have proven to be valuable bioanalytical tools for a broad range of applications. New methods for µPAD fabrication are needed, however, to facilitate their mass production at a competitive cost. To address this need, we report the use of a boronic acid-containing siloxane polymer (BorSilOx) for patterning hydrophobic barriers for µPADs. This material functions by covalently binding to hydroxyl groups in the paper substrate. It is compatible with inkjet printing or roll-to-roll (stamping) processes, as demonstrated here using three different deposition methods. BorSilOx is able to render a broad range of cellulosic materials (from paper towels to wood) hydrophobic, with contact angle measurements demonstrating superhydrophobicity in many cases. We further demonstrate the utility of the polymer in µPADs via assays for pH and glucose.

11.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35591130

RESUMO

Many (if not most) biosensors rely on functional silane coatings as a first step toward covalent immobilization of specific capture molecules. While methods for silanization of silica (SiO2) surfaces are very well developed, less has been done to develop and characterize silanization methods for alternative substrates, such as alumina (Al2O3). In particular, the behavior of Al2O3 coatings grown on aluminum under ambient conditions has not been studied. To address this issue, we have tested solution-phase deposition of two silanes on Al2O3 (3-aminopropyl triethoxysilane and 3-triethoxysilyl)propylsuccinic anhydride) and their applicability to analyte-specific biosensing. Contact angle measurements and imaging via Scanning Electron Microsopy (SEM) were employed to characterize surfaces. We find that 3-aminopropyl triethoxysilane produces well-behaved films and demonstrate that this surface can undergo further reaction with glutaraldehyde followed by an anti-Bacillus subtilis antibody to yield functionalized Al2O3 surfaces capable of specific capture of B. subtilis spores (a model of B. anthracis, the causative organism of Anthrax). In contrast, 3-triethoxysilyl)propylsuccinic anhydride did not behave well with Al/Al2O3 under the reaction conditions tested. In addition to providing specific protocols for Al/Al2O3 functionalization, this work highlights the importance of surface chemistry assessment in the development of new sensors.


Assuntos
Antraz , Bacillus anthracis , Alumínio , Anidridos , Bacillus subtilis , Humanos , Dióxido de Silício/química , Esporos Bacterianos
12.
Front Bioeng Biotechnol ; 10: 846230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360391

RESUMO

Human Microphysiological Systems (hMPS), otherwise known as organ- and tissue-on-a-chip models, are an emerging technology with the potential to replace in vivo animal studies with in vitro models that emulate human physiology at basic levels. hMPS platforms are designed to overcome limitations of two-dimensional (2D) cell culture systems by mimicking 3D tissue organization and microenvironmental cues that are physiologically and clinically relevant. Unlike animal studies, hMPS models can be configured for high content or high throughput screening in preclinical drug development. Applications in modeling acute and chronic injuries in the musculoskeletal system are slowly developing. However, the complexity and load bearing nature of musculoskeletal tissues and joints present unique challenges related to our limited understanding of disease mechanisms and the lack of consensus biomarkers to guide biological therapy development. With emphasis on examples of modeling musculoskeletal tissues, joints on chips, and organoids, this review highlights current trends of microphysiological systems technology. The review surveys state-of-the-art design and fabrication considerations inspired by lessons from bioreactors and biological variables emphasizing the role of induced pluripotent stem cells and genetic engineering in creating isogenic, patient-specific multicellular hMPS. The major challenges in modeling musculoskeletal tissues using hMPS chips are identified, including incorporating biological barriers, simulating joint compartments and heterogenous tissue interfaces, simulating immune interactions and inflammatory factors, simulating effects of in vivo loading, recording nociceptors responses as surrogates for pain outcomes, modeling the dynamic injury and healing responses by monitoring secreted proteins in real time, and creating arrayed formats for robotic high throughput screens. Overcoming these barriers will revolutionize musculoskeletal research by enabling physiologically relevant, predictive models of human tissues and joint diseases to accelerate and de-risk therapeutic discovery and translation to the clinic.

13.
Cells ; 11(8)2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456017

RESUMO

Individuals with underlying chronic skin conditions, notably atopic dermatitis (AD), are disproportionately affected by infections from members of the herpesviridae, papovaviridae, and poxviridae families. Many patients with AD experience recurrent, widespread cutaneous viral infections that can lead to viremia, serious organ complications, and even death. Little is known about how the type 2 inflammatory environment observed in the skin of AD patients impacts the susceptibility of epidermal cells (keratinocytes) to viral pathogens. Herein, we studied the susceptibility of keratinocytes to the prototypical poxvirus, vaccinia virus (VV)-the causative agent of eczema vaccinatum-under conditions that simulate the epidermal environment observed in AD. Treatment of keratinocytes with type 2 cytokines (IL-4 and -13) to simulate the inflammatory environment or a tight junction disrupting peptide to mirror the barrier disruption observed in AD patients, resulted in a differentiation-dependent increase in susceptibility to VV. Furthermore, pan JAK inhibition was able to diminish the VV susceptibility occurring in keratinocytes exposed to type 2 cytokines. We propose that in AD, the increased viral susceptibility of keratinocytes leads to enhanced virus production in the skin, which contributes to the rampant dissemination and pathology seen within patients.


Assuntos
Dermatite Atópica , Erupção Variceliforme de Kaposi , Citocinas , Dermatite Atópica/complicações , Humanos , Erupção Variceliforme de Kaposi/complicações , Erupção Variceliforme de Kaposi/patologia , Queratinócitos/patologia , Vírus Vaccinia
14.
Pathogens ; 11(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215130

RESUMO

Infection with the ß-coronavirus SARS-CoV-2 typically generates strong virus-specific antibody production. Antibody responses against novel features of SARS-CoV-2 proteins require naïve B cell activation, but there is a growing appreciation that conserved regions are recognized by pre-existing memory B cells (MBCs) generated by endemic coronaviruses. The current study investigated the role of pre-existing cross-reactive coronavirus memory in the antibody response to the viral spike (S) and nucleocapsid (N) proteins following SARS-CoV-2 infection. The breadth of reactivity of circulating antibodies, plasmablasts, and MBCs was analyzed. Acutely infected subjects generated strong IgG responses to the S protein, including the novel receptor binding domain, the conserved S2 region, and to the N protein. The response included reactivity to the S of endemic ß-coronaviruses and, interestingly, to the N of an endemic α-coronavirus. Both mild and severe infection expanded IgG MBC populations reactive to the S of SARS-CoV-2 and endemic ß-coronaviruses. Avidity of S-reactive IgG antibodies and MBCs increased after infection. Overall, findings indicate that the response to the S and N of SARS-CoV-2 involves pre-existing MBC activation and adaptation to novel features of the proteins, along with the potential of imprinting to shape the response to SARS-CoV-2 infection.

15.
Org Biomol Chem ; 20(3): 606-612, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34927652

RESUMO

As the importance of RNA as a therapeutic target has become increasingly recognized, the need for new chemotypes able to bind RNA has grown in significance. We hypothesized that diketopiperazines (DKPs), common substructures in natural products and protein-targeting therapeutic agents, could serve as effective scaffolds for targeting RNA. To confirm this hypothesis, we designed and synthesized two analogs, one incorporating a DKP and one not, of compounds previously demonstrated to bind an RNA critical to the life cycle of HIV-1 with high affinity and specificity. Prior to compound synthesis, calculations employing density functional methods and molecular mechanics conformational searches were used to confirm that the DKP could present functionality in a similar (albeit not identical) orientation to the non DKP-containing compound. We found that both the DKP-containing and parent compound had similar affinities to the target RNA as measured by surface plasmon resonance (SPR). Both compounds were found to have modest but equal anti-HIV activity. These results establish the feasibility of using DKPs to target RNA.


Assuntos
Fármacos Anti-HIV/farmacologia , Produtos Biológicos/farmacologia , Dicetopiperazinas/farmacologia , HIV/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Teoria da Densidade Funcional , Dicetopiperazinas/síntese química , Dicetopiperazinas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
16.
Anal Chem ; 93(40): 13580-13588, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34596381

RESUMO

Arrayed imaging reflectometry (AIR) is an optical biosensor platform for simple, multiplex measurement of antigen-specific antibody responses in patient blood samples. Here, we report the development of StaphAIR, an 8-plex Staphylococcus aureus antigen array on the AIR platform for profiling antigen-specific anti-S. aureus humoral immune responses. Initial validation experiments with mouse and humanized monoclonal antibodies against the S. aureus autolysin glucosaminidase (Gmd) domain, and subsequent testing with dilution series of pooled positive human serum confirmed analytically robust behavior of the array, with all antigens displaying Langmuir-type dose-response curves. Testing a cohort of 82 patients with S. aureus musculoskeletal infections (MSKI) and 30 healthy individuals enabled discrimination of individual patient responses to different S. aureus antigens, with statistical significance between osteomyelitis patients and controls obtained overall for four individual antigens (IsdA, IsdB, Gmd, and SCIN). Multivariate analyses of the antibody titers obtained from StaphAIR revealed its utility as a potential diagnostic tool for detecting S. aureus MSKI (area under the receiver operating characteristic curve (AUC) > 0.85). We conclude that StaphAIR has utility as a high-throughput immunoassay for studying and diagnosing osteomyelitis in patients.


Assuntos
Osteomielite , Infecções Estafilocócicas , Animais , Anticorpos Antibacterianos , Formação de Anticorpos , Humanos , Camundongos , Osteomielite/diagnóstico , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus
17.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502753

RESUMO

While mRNA vaccines have been well-studied in vitro and in animals prior to their use in the human population during the Covid-19 pandemic, their exact mechanisms of inducing immunity are still being elucidated. The large-scale collection of data necessary to fully understand these mechanisms, and their variability across heterogeneous populations, requires rapid diagnostic tests that accurately measure the various biomarkers involved in the immune response following vaccination. Recently, our lab developed a novel "Disposable Photonics" platform for rapid, label-free, scalable diagnostics that utilizes photonic ring resonator sensor chips combined with plastic micropillar cards able to provide passive microfluidic flow. Here, we demonstrate the utility of this system in confirming the presence of SARS-CoV-2 spike protein in the serum of recently vaccinated subjects, as well as tracking a post-vaccination rise in anti-SARS-CoV-2 antibodies. A maximum concentration in SARS-CoV-2 spike protein was detected one day after vaccination and was reduced below detectable levels within 10 days. This highlights the applicability of our rapid photonic sensor platform for acquiring the data necessary to understand vaccine mechanisms on a large scale, as well as individual patient responses to SARS-CoV-2 mRNA vaccines.


Assuntos
Técnicas Biossensoriais , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , COVID-19 , Humanos , Óptica e Fotônica , Pandemias , SARS-CoV-2 , Vacinação
18.
Acc Chem Res ; 54(17): 3349-3361, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34403258

RESUMO

Treatment of HIV-1 has largely involved targeting viral enzymes using a cocktail of inhibitors. However, resistance to these inhibitors and toxicity in the long term have pushed the field to identify new therapeutic targets. To that end, -1 programmed ribosomal frameshifting (-1 PRF) has gained attention as a potential node for therapeutic intervention. In this process, a ribosome moves one nucleotide backward in the course of translating a mRNA, revealing a new reading frame for protein synthesis. In HIV-1, -1 PRF allows the virus to regulate the ratios of enzymatic and structural proteins as needed for correct viral particle assembly. Two RNA structural elements are central to -1 PRF in HIV: a slippery sequence and a highly conserved stable hairpin called the HIV-1 frameshifting stimulatory signal (FSS). Dysregulation of -1 PRF is deleterious for the virus. Thus, -1 PRF is an attractive target for new antiviral development. It is important to note that HIV-1 is not the only virus exploiting -1 PRF for regulating production of its proteins. Coronaviruses, including the COVID-19 pandemic virus SARS-CoV-2, also rely on -1 PRF. In SARS-CoV-2 and other coronaviruses, -1 PRF is required for synthesis of RNA-dependent RNA polymerase and several other nonstructural proteins. Coronaviruses employ a more complex RNA structural element for regulating -1 PRF called a pseudoknot. The purpose of this Account is primarily to review the development of molecules targeting HIV-1 -1 PRF. These approaches are case studies illustrating how the entire pipeline from screening to the generation of high-affinity leads might be implemented. We consider both target-based and function-based screening, with a particular focus on our group's approach beginning with a resin-bound dynamic combinatorial library (RBDCL) screen. We then used rational design approaches to optimize binding affinity, selectivity, and cellular bioavailability. Our tactic is, to the best of our knowledge, the only study resulting in compounds that bind specifically to the HIV-1 FSS RNA and reduce infectivity of laboratory and drug-resistant strains of HIV-1 in human cells. Lessons learned from strategies targeting -1 PRF HIV-1 might provide solutions in the development of antivirals in areas of unmet medical need. This includes the development of new frameshift-altering therapies for SARS-CoV-2, approaches to which are very recently beginning to appear.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Técnicas de Química Combinatória , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
19.
Lab Chip ; 21(15): 2913-2921, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160511

RESUMO

Decades of research have shown that biosensors using photonic circuits fabricated using CMOS processes can be highly sensitive, selective, and quantitative. Unfortunately, the cost of these sensors combined with the complexity of sample handling systems has limited the use of such sensors in clinical diagnostics. We present a new "disposable photonics" sensor platform in which rice-sized (1 × 4 mm) silicon nitride ring resonator sensor chips are paired with plastic micropillar fluidic cards for sample handling and optical detection. We demonstrate the utility of the platform in the context of detecting human antibodies to SARS-CoV-2, both in convalescent COVID-19 patients and for subjects undergoing vaccination. Given its ability to provide quantitative data on human samples in a simple, low-cost single-use format, we anticipate that this platform will find broad utility in clinical diagnostics for a broad range of assays.


Assuntos
COVID-19 , Óptica e Fotônica , Bioensaio , Teste para COVID-19 , Análise Custo-Benefício , Humanos , SARS-CoV-2
20.
Bioconjug Chem ; 32(3): 533-540, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33559468

RESUMO

Newly emerging influenza viruses adapted from animal species pose significant pandemic threats to public health. An understanding of hemagglutinin (HA) receptor-binding specificity to host receptors is key to studying the adaptation of influenza viruses in humans. This information may be particularly useful for predicting the emergence of a pandemic outbreak. Therefore, high-throughput sensing technologies able to profile HA receptor binding can facilitate studies of influenza virus evolution and adaptation in humans. As a step toward this goal, we have prepared glycan-based receptor analogue microarrays on the Arrayed Imaging Reflectometry (AIR) platform. These arrays demonstrate label-free, multiplex detection and discrimination between human and avian influenza viruses. Microarrays consisting of glycan probes with 2,6 and 2,3 linkages were prepared. After first confirming their ability to capture lectins (carbohydrate-binding proteins) with known specificities, we observed that the arrays were able to discriminate between and quantify human pandemic influenza A/California/07/2009 (H1N1pdm) and avian A/Netherlands/1/2000 (H13N8) influenza viruses, respectively. As the method may be expanded to large numbers of glycans (>100) and virus subtypes (H1-H18), we anticipate it can be applied to systematically evaluate influenza virus adaptation in humans. In turn, this will facilitate global influenza surveillance and serve as a new tool enabling health organizations, governments, research institutes, and laboratories to react quickly in the face of a pandemic outbreak.


Assuntos
Técnicas Biossensoriais/métodos , Vírus da Influenza A/isolamento & purificação , Análise em Microsséries/métodos , Polissacarídeos/química , Animais , Configuração de Carboidratos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...